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ABSTRACT This paper presents a data-driven model-based control system for autonomous underwater
vehicles (or AUVs) subject to input delays. This work is motivated by the input time delays that can arise
in underwater robotics due to communication restrictions and sensor malfunctions. Such delays can highly
degrade the performance of classical control structures resulting in unpredictable system behaviours. The
proposed control architecture addresses such limitations. The approach incorporates a linear dynamic repre-
sentation of the system obtained using the Koopman operator in an observer/state prediction formulation. The
proposed control architecture is designed based on discrepancies between the data-driven estimation of the
system’s behaviour and the actual AUV performance using chain predictors. The capabilities of the proposed
approach are shown through experiments performed with a 4 degrees-of-freedom autonomous underwater
vehicle. The results demonstrate stable behaviours without steady-state errors, even in the presence of long
delay.

INDEX TERMS Autonomous underwater vehicles, control theory, Koopman operator, model based control,
observer-based predictors.

I. INTRODUCTION
Underwater robotic systems have become popular in the last
decade due to their ability to explore difficult and uncharted
territories. Remotely operated vehicles (or ROVs) and AUVs
have been used in military applications [1], oil and gas appli-
cations [2], and scientific research [3]. ROVs require expert
knowledge to control the system but they can spend extended
periods of time in the water performing exploration work.
AUVs can spend a limited amount of time exploring the
environment, but they have the benefit of being autonomous
and can easily reach confined spaces. As for any modern
system, ROVs and AUVs require reliable control systems
that can ensure robust behaviour regardless of the operating
conditions. The design of control architectures for underwa-
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ter robotic systems includes difficulties such as parametric
uncertainties, nonlinearities in the dynamics of the system,
sudden external disturbances [4], communication delays [5],
or lagged information from the navigation sensors. Further-
more, there are cases when the control system has to handle
input delays of unknown time [4], due to sensor failure, band-
width limitations in communication, limited internal working
frequency of on-board sensors, or discrepancies with the
microcontroller requirements [6].

The research community has focused on designing control
algorithms that address these challenges primarily based on
the assumptions that either there are accurate mathematical
models available, or that enough data about the system’s
behaviour can be obtained [7], [8]. A popular technique inves-
tigated by the control community is time delay compensation,
where if the delay is sufficiently small, a control law based
on the delayed dynamic model can be used to compensate
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FIGURE 1. BlueROV2Heavy has been modified to enable fully
autonomous capabilities.

for unknown disturbances and parameters in the dynamic
model [9]. This approach consists of developing a feedback
control loop that can compensate for delayed output mea-
surements or state information and produces asymptotically
stable behaviour. However, these types of approaches usually
assume that the delay quantity is known in advance [10]. The
method of sequential predictors [11] is part of a family of
time delay techniques where the original model of the system
is operated at different time scales, producing a dynamic
extension whose state variable can be used in the feedback
control in order to achieve the desired delay compensation.
These methods ensure input-to-state stability with respect to
uncertainties [12], while at the same time compensating for
arbitrarily long delays [13]. They have been designed and
investigated for nonlinear systems with bounded uncertain-
ties and have been validated from a theoretical perspective.
However, one drawback of the sequential predictor methods
is that they require a perfect knowledge of the system dynam-
ics [11].

Obtaining an accurate dynamic model for underwater
vehicles can be time-consuming and challenging, as the
system is highly nonlinear and unknown hydrodynamic
effects are present [14]. These limitations have the poten-
tial to be addressed by leveraging modern machine learning
approaches [15]. However, techniques such as neural net-
works provide a black-box type of approach that in some
cases may not be directly applicable to classical control
formulations. Nevertheless, one data-driven approach based
on Koopman operators [16] has been introduced and stud-
ied in several papers focused on dynamic model estimation
and model-based control [17], [18]. Koopman-based meth-
ods focus on the dynamical model of the system in an
explicit control-oriented description without any simplifi-
cations regarding the behaviour of the system being mod-
eled [19]. As such, Koopman modelling techniques achieve
a semi-parametric model, where the model’s structure main-
tains an equation-based representation, while the parameters
are obtained through data. This opens a new avenue of
research in which model-based control methodologies can be
used in combinationwithKoopman operators to obtain a class
of data-driven control systems [20].

In this work, we aim to leverage the advancements of
dynamic modelling using Koopman operators to design
a novel semi-parametric prediction control structure for
coupled nonlinear systems with model uncertainties and
unknown input delays. Specifically, we designed and devel-
oped a low-level control law for autonomous underwater
vehicles, such as the one seen in Fig. 1, where communica-
tion delays between the top-side computer (responsible for
the high-level decision making) and the microcontroller are
present. The contributions of this work are as follows:

• The design of a novel prediction-based control law for
high-dimensional nonlinear systems with large paramet-
ric uncertainties.

• The development of a data-driven model for a high-
dimensional underwater system based on the Koopman
operator.

• The experimental evaluation of time-delayed controllers
for small-sized autonomous underwater vehicles.

The remainder of the paper is structured as follows.
In Section II, we provide a summary of modelling and con-
trol methods for underwater marine vehicles and time delay
control. In Section III, the problem to be solved is intro-
duced, Section IV presents themodelling approach formarine
vehicles. Section V describes the proposed control system.
We detail our experimental results in Section VI where a
discussion of the advantages and limitations of the control
architecture is presented. Finally, the conclusions and future
directions of this work are presented in Section VII.

II. RELATED WORK
Designing robust and reliable control systems for underwa-
ter robots is challenging due to nonlinearities, sudden and
large environmental disturbances, high uncertainties in the
hydrodynamic parameters, and time variation of the system.
Such limitations are difficult to address by well-known linear
controllers [21] and the research community has investigated
strategies that perform well with nonlinear systems [22].

In [23], a fuzzy proportional integral derivative (PID) con-
troller is presented for a spherical underwater robot. The
controller computes the system error and its rate, leveraging
this information to modify the gains of the PID controller
based on fuzzy logic. The gains of proportional integral lim-
ited (or PLIM) controllers have been adapted online in [24]
based on adaptive interaction theory. This approach compen-
sates for any changes in the environmental characteristics
or payload changes of the vehicle, addressing the challenge
of uncertainty in the dynamic model of the system. This
issue has also been investigated by using time delay control
systems in [4] and [25]. For cases where time delay control
systems are used, it has been shown that if the delay time is
sufficiently small, then a control law based on the delayed
dynamic model can be used to compensate for unknown
disturbances and parameters in the dynamic model [9].
Furthermore, time delay control approaches are extremely
attractive for the area of coordinated underwater vehicles
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where leader-follower based approaches are used. The low
data transmission of acoustic modems introduces commu-
nication delays in the control structure [26]. Approaches
such as event-triggered control [27] or gradient descent delay
estimators [26] have been used to control teams of AUVs
with kinematic representations, without taking into account
the dynamics of the system and the large uncertainties in
the models. Nevertheless, for marine vehicles, where com-
munication with other robotic systems or human operators is
required, designing low-level control methods that consider
the hydrodynamics are essential. Methods such as the one
presented in [4] cannot guarantee robust behaviour if large
delays due to communication constraints are present. Another
method, used in the control of AUVs, is that of fixed-time
controllers [28], however these do not take into consideration
delays in the system [29], [30].

One delay compensation approach shown in literature uses
sequential-predictor-based methods that can compensate for
large delays [31]. The characteristic of such a controller is
the use of predictors to define a variable that will replace the
state of the system in the feedback formulation. This elim-
inates the effects of system delay [32]. In [31], the authors
present a sequential predictor approach to compensate for
both input andmeasurement delays. In [33], the authors intro-
duce the idea of sequential structures for sub-predictors to
control unstable systems with long time-delay. This approach
designs coupled prediction models, with each being used
to estimate the state on an interval that corresponds to a
suitable fraction of the delay. A similar idea has been pre-
sented in [34] where the sub-predictors have been integrated
with H∞ control. In [13], a sequential predictor for discrete-
time systems with time-varying delays is presented, where
the number of the predictors is an upper bound for the
delay.

The above mentioned methods are highly desirable as
they can produce global asymptotic stabilisation of the sys-
tem. The work done in the area of sequential predictors
has focused on providing asymptotic convergence properties.
However, the computational load and time of previously
reported sequential-predictor control methods represents a
limitation for their implementation on robots with limited
computational capabilities and operational power. Another
limitation of such control approaches is the assumption that
the models used in the predictors are known except for their
having an unknown additive uncertainty. This is not the case
for underwater vehicles where physics-based methods such
as the ones presented in [35] and [36] suffer from high
uncertainties in the hydrodynamic parameters. An approach
to address this limitation in the model is the use of data-
driven approaches. In [37] a neurofuzzy model of an AUV is
generated. However, the identification of the system requires
initial expert knowledge, which is later refined by data-driven
formulations. In [38], a long short-term memory (or LSTM)
network is used to model the dynamics of an AUV. This
model is later used to identify faults in the sensors of the
vehicle by comparing the predicted behaviour with the actual

observed performance. A neural network model for an under-
water arm was developed in [14], and used in combination
with a model predictive controller (or MPC) for the efficient
manipulation of unknown payloads.

While these data-driven methodologies provide ample
modelling possibilities, they produce a black-box type model
that may be difficult to integrate with existing control
methodologies. Koopman operator theory presents an alter-
native procedure, as it is able to produce linear models of
nonlinear systems directly from data [39]. In [19], Koopman
operators together with an MPC are used for the control of a
soft robotic arm. In [40], graph neural networks are used as
basic functions for calculatingKoopman operators. The states
are encoded with the graph neural network into object-centric
embeddings, achieving generalisation. However, while Koop-
man operators provide fast and simple models that can be
readily integrated with classical control methods, their appli-
cation to real-time robotics systems has been limited, with no
works for underwater systems.

III. PROBLEM STATEMENT
Consider a nonlinear model of an underwater vehicle system
of the form:

ẋ(t) = F(x(t), v(t),u(t − τ )) (1)

where x is valued inRq and represents the states of the marine
robotic system, the piece-wise C1 function v is valued in Rq

and represents uncertainty, u is valued in Rm and represents
the control inputs, and τ > 0 is the unknown time delay. The
objective of this paper is to specify the feedback control u
such that for a desired reference trajectory xref , the dynamics
for x − xref are globally asymptotically stable to the origin
on Rq.

An intermediate step in achieving this goal is to obtain a
high-accuracy discrete linear representation of the physical
system shown in Equation (1), which could be formulated as:

x[k] = Ax[k] + Bu[k − τ ] + Ev[k] (2)

where A ∈ Rq×q, B ∈ Rq×m and E ∈ Rq×q are constant
matrices, and τ > 0 is a constant unknown discrete delay.
Note that we abuse the notation here and utilise τ both for
the continuous and discrete representation, this allows us
to keep a consistent notation. Unlike non-linear methods,
linear models are easier to compute, providing faster and
simpler implementations. This is desired in mobile robots
where on-board computer capabilities are limited, especially
in the underwater domain.
Remark 1: Due to the constant unknown input delay τ ,

defining solutions of Equation (1) calls for initial functions
of x that are defined in [t0 − τ, t0] and valued in Rq (instead
of using initial states x0 ∈ Rq, which would be called for
when no delays were present), where t0 is the initial time for
the solution. Letting | · | denote the usual Euclidean norm, our
assumption is as follows:
Assumption 1: There is an unknown constant � > 0 such

that |v(t)| < � for all t ≥ 0.
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IV. SEMI-PARAMETRIC DYNAMIC MODELLING
A. NONLINEAR DYNAMIC REPRESENTATION
In this subsection, we specify a nonlinear representation of
an AUV with uncertainties caused by unknown hydrody-
namic parameters and environmental disturbances, and with
input time delays. The vehicle’s pose in the world coordinate
frame is represented by η(t) = [xl(t), yl(t), zl(t), φa(t), θa(t),
ψa(t)]T , at time t , with xl(t), yl(t) and zl(t) being the position
in the x, y and z plane respectively, φa(t) being the roll,
θa(t) being the pitch, and ψa(t) being the yaw of the vehicle.
Additionally, the vehicle’s body-fixed velocity vector is rep-
resented by ν(t) = [u(t), v(t), w(t), p(t), q(t), r(t)]T . The
time delay control inputs are represented by u(t − τ ). The
dynamics of the AUV can be expressed as:{

η̇(t) = RIBν(t)
M̃ ν̇(t) + C̃ν(t) + D̃ν(t) + g̃ = u(t − τ ) + v(t)

(3)

where RIB is the rotation matrix from the body frame to the
inertial frame, M̃ is an estimate of the inertia matrix, C̃ con-
tains the estimated Coriolis and centrifugal terms, D̃ contains
the estimated hydrodynamic damping terms, and g̃ are the
estimated restoring forces. The requirements for Equation (3)
are those given in Section III. Particularly that, τ > 0 and
Assumption 1 must hold true.

The dynamics of the AUV presented in Equation (3) can
also be expressed in a general way as in Equation (1),
where the state of the system x(t) can be defined as x(t) =

[η(t), ν(t)]. Since it is difficult to estimate the dynamic
parameters in Equation (3) due to different water conditions
and challenges in hydrodynamics estimation [30], semi-
parametricmodelling approaches can bemore suitable. In this
paper, we propose to use a Koopman operator [41] for the
modelling of underwater vehicles.

B. LINEARISED DYNAMICS USING KOOPMAN OPERATOR
For a nonlinear system of the form:

ẋ(t) = F(x(t),u(t)) (4)

predicting the behaviour of the system at time t given the
initial state x0 and a set of values {u0,u1, . . . ,ut } for the
control inputs in Rm can be done using Koopman operators.
To achieve this, the system in Equation (4) can be lifted to an
infinite dimensional function space F , in which the flow of
the system is described based on a Koopman operator, which
is a collection of functions Kt : F → F for t ≥ 0 [42]. The
elements f ∈ F are called observables and the evolution of
the system can be described as:

Kt f = f ◦ φt (5)

where ◦ is the composition operator, and the flow map φt
of Equation (4) is defined such that φt (x0) is the solution of
Equation (4) at each time t ≥ t0 for each given initial state
x0, and for a given fixed initial time t0 ≥ 0.
This operator fully captures the properties of the underly-

ing system, providing a linear representation of the nonlinear

system in the infinite-dimensional space of observables.
However, it is not possible to express the Koopman oper-
ator as a finite-dimensional matrix, since F is infinite-
dimensional, but it is possible to project the Koopman
operator to a finite-dimensional subspace and represent it
as a matrix [19]. Therefore, we are interested in finding a
finite dimensional representation of the Koopman operator.
Usually, this representation is learned by data using a set of
P ∈ N measurements [42]. To achieve this, the extended
dynamic mode decomposition (or EDMD) algorithm [16]
has been previously used in various applications [43], [44]
and will be employed in this paper.

We start by defining a subspace F̄ ⊂ F spanned
by a basis of linearly real valued independent func-
tions ψi, where i = 1, . . . ,N , and a vector valued
function ψ(x) = [ψ1(x), ψ2(x), · · · , ψN (x)], where x =[
x1, . . . , xq

]T . Then using a set of experimental data
(x[k], x[k + 1]) for each k ∈ 1, . . . ,P, we construct a series
of snapshot pairs:

α[k] =

[
ψ(x[k])
u[k]

]
and β[k] =

[
ψ(x[k + 1])

u[k]

]
where x[k] and u[k] are the state vector and the control value
used in the dynamics represented by Equation (4) at each of
the discrete times k .

These consecutive snapshot pairs do not have to be gener-
ated by consecutive state measurements. Note that we also
include the non-lifted input u[k] in the snapshot, which
will allow us to combine this method with feedback control
design.

The problem is now focused on finding a data-based
approximationU of the Koopman operator, from a set of data
points by solving the optimisation problem in Equation (6).
This is obtained based on the EDMD algorithm presented
in [45].

minU
P∑
t=1

|UTα[k] − β[k]|2 (6)

We assume that U is build based on A ∈ RN×N and B ∈

RN×m, such that:

UT
=

[
A B
O I

]
(7)

where O and I and the zero and identity matrices of the
required dimensions. The problem of finding the optimal U
from a set of data points can then be reformulated as:

minA,B
P∑
t=1

|Aψ(x[k]) + Bu[k] − ψ(x[k + 1])|2 (8)

This last expression allows us to obtain the A and B param-
eters from data for discrete-time systems. The Koopman
representation can be expressed as:

x̄[k + 1] = Ax̄[k] + Bu[k] (9)
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where x̄[k] = ψ(x[k]). In the following section, we will
utilise this representation to define an observer-based control
system for AUV under variable time delays.

V. CONTROLLER DESIGN
In this section, we present the derivation of the proposed
control architecture for systems with input time delay. The
proposed approach leverages the Koopman estimation for
state observer formulations within a cascaded feedback archi-
tecture.

Using the Koopman operator as presented in Section IV-B,
the linearised representation of the AUV with input delays is
given by:

x̄[k + 1] = Ax̄[k] + Bu[k − τ ]

y[k] = Ccx̄[k] (10)

where the lifted state vector x̄ = ψ(x) is valued in RN , the
control input vector u is valued in Rm, the observation vector
y is valued in Rq, Cc ∈ Rq×N , and τ denotes some constant
unknown time delay.
Assumption 2: (A,B) is controllable, and y[k] is available

for measurement.
Assumption 3: (A,Cc) is observable.
While Equation (10) models the dynamics of the system

by utilising data gathered in various conditions, it is still
necessary to account for discrepancies in the model caused
by cases for which data is not available (i.e., impossible to
obtain data for every single underwater condition where cur-
rents differ from region to region). To take these differences
into consideration, it is possible to include a function in the
Koopman formulation that represents these discrepancies to
obtain:

x̄[k + 1] = Ax̄[k] + Bu[k − τ ] + Ev[k]

y[k] = Ccx̄[k] (11)

with E ∈ RN×q, and v[k] is unknown. In Section V-A, this
representation is leveraged to obtain an observer structure,
which allows for the construction of a control signal u that
realises the objectives. This control signal is presented in
Section V-B.

A. OBSERVER/STATE PREDICTION FORMULATION
Well known standard feedback laws will be able to stabi-
lize the system when τ = 0 in Equation (11), but will
have limited application when τ > 0. In a system with
input delay as that of Equation (11), we are interested in
obtaining an asymptotic state prediction based on a state
observer [46]. The proposed approach is based on a class
of observers, called sequential predictors, which provide
an asymptotic estimation but require a model representa-
tion of the system. This paper presents the integration of
the semi-parametric model based on the Koopman opera-
tor, obtained in Section IV-B, and the lifted representation
of the state x̄[k] in the sequential predictor formulation.
Furthermore, it expands the standard sequential-predictor

formulation by integrating a proportional integral (PI) archi-
tecture into the formulation of sequential predictors.

Given the lifted estimation x̄[k + τ ] at time [k + τ ], and
assuming x̄[k] is known at time k , a proportional integral (or
PI) observer-like structure [47] is designed based on:

z[k + 1] = Az[k] + Bu[k]

− K (Ccz[k − τ ] − y[k])+ Ed[k]

d[k + 1] = d[k]−L(Ccz[t − τ ] − y[k]) (12)

where z[k] is the estimate of x̄[k + τ ], d is the estimation of
the discrepancy between observations and predictions and is
valued in Rq, and E ∈ RN×q, K ∈ RN×q and L ∈ Rq×q are
the gain matrices of the PI observer.

It is possible to define a new set of variables
w[k] = [z[k], d[k]]T and xe[k] = [x̄[k], v[k]]T [48], which
allows the reformulation of Equation (12) in compact form:

w[k + 1] = Aew[k] + Beu[k] − KeCe (w[k − τ ] − xe[k])
(13)

where:

Ae =

[
A E
0 I

]
, Ke =

[
K
L

]
, Be =

[
B
0

]
, and Ce =

[
Cc 0

]
Now, the objective is to make the estimation error asymp-

totically decay to zero. The estimation error is defined as:

e[k] =

[
z[k] − x̄[k + τ ]
d[k] − v[k + τ ]

]
= w[k] − xe[k + τ ] (14)

and the error dynamics can be written as:

e[k + 1] = w[k + 1] − xe[k + 1 + τ ] (15)

with w[k + 1] as in Equation (13). For simplicity, we assume
that v is constant in what follows, but generalizations for
nonconstant can be done using input-to-state stability [12].
Furthermore, xe[k + 1 + τ ] can be written as:

xe[k + 1 + τ ] = Aexe[k + τ ] + Beu[k] (16)

Combining w[k + 1] and xe[k + 1 + τ ] results in

e[k + 1] = Aew[k] + Beu[k] − KeCe(w[k − τ ]

− xe[k]) − xe[k + 1 + τ ] (17)

which after simplifications yields:

e[k + 1] = Ae(w[k]−xe[k + τ ]) − KeCe (w[k − τ ] − xe[k])

(18)

Recalling that e[k] = w[k] − xe[k + τ ], it can be introduced
in Equation (18), which gives the equation of error dynamics
of the form:

e[k + 1] = Aee[k] − KeCee[k − τ ] (19)

By properly choosing the gain matrices Ke ∈ R(N+q)×q, we
can ensure that Equation (19) is globally exponentially stable
to 0 when τ > 0 is small enough [49]. However, in this
work, we are interested in obtaining a set of n partial-state
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predictors-observers where n is the number of predictors.
Therefore, following [32], Equation (13) can now be refor-
mulated as:

w1[k + 1] = Aew1[k] + Beu[k −
n−1
n τ ]

− Ke1Ce(w1[k −
τ
n ] − xe[k])

wi[k + 1] = Aewi[k] + Beu[k −
n−i
n τ ]

− KeiCe
(
wi[k −

τ
n ] − wi−1[k]

)
for 2 ≤ i ≤ n (20)

Each wi[k] is a prediction of xe[k + i τn ]. This will result in
wn[k] = [zn[k], dn[k]]T being the last predictor and the most
accurate estimator of the states of the system, if each Kei is
chosen properly. Furthermore, each Kei and n will need to
satisfy that: 1) Ae−KeiCe is Hurwitz and 2) n is large enough.
The corresponding prediction error for each subsystem is:

ei[k] = wi[k] − xe
[
k + i

τ

n

]
(21)

FromEquation (20), and similarly as in [32], the error dynam-
ics satisfy:

ei[k + 1] = wi[k + 1] − xe
[
k + 1 + i

τ

n

]
(22)

Replacing Equation (20) in Equation (22) yields:

ei[k + 1] = Aewi[k] + Beu[k −
n−i
n τ ]

− KeiCe
(
wi[k −

τ
n ] − wi−1[k]

)
− xe

[
k + 1 + i

τ

n

]
(23)

and knowing that xe[k + 1 + i τn ] = Aexe[k + i τn ] + Beu[k −
n−i
n τ ], we can replace into Equation (23) and obtain:

ei[k + 1] = Aeei[k] − KeiCeei
[
k −

τ

n

]
with i ≥ 1, e0 = 0 (24)

B. FEEDBACK CONTROL FORMULATION
With the PI observer defined in the previous section, we now
focus on designing a feedback control law u[k] that can
stabilize the system presented in Equation (3) when τ >

0. This u[k] is used in the observer predictor formula-
tion in Section V-A. The current system’s state, x[k] =

[η[k], ν[k]]T , is obtained on-line from the sensor readings
on board of the AUV. A cascaded feedback formulation
similar to the one presented in [50] is chosen due to its
simplicity and effectiveness. The proposed cascade controller
allows us to accurately compensate for changes in velocity,
which occur rapidly, while at the same time reducing errors
in the position [51]. Additionally, this architecture allows
the selection of the system’s operational mode to be able to
switch between position control and velocity control [24].
The proposed architecture thus has two control loops, an outer
proportional derivative (or PD) structure for position control,
and an inner proportional integral derivative (or PID) con-
troller for velocity regulation.

To control the system when τ > 0, the asymptotic
state prediction zn[k], that is a component based of wn[k],
as defined in Section V-A, can now be utilized in the con-
trol formulation to obtain a control law that minimizes the
error between the reference and the predicted state of the
system. With the notation yn[k] = Cczn[k], and yn[k] =

[ypn[k], yvn[k]]
T , we can then obtain Equation (25).

ep[k] = xpref [k] − ypn[k]

ev[k] = ub[k] − yvn[k]

uw[k] = uw[k − 1] +

(
K p
p +

K p
d

1t

)
ep[k]

+

(
−K p

p −
2K p

d

1t

)
ep[k − 1] +

K p
d

1t
ep[k − 2]

u[k] = u[k − 1] +

(
K v
p + K v

i 1t +
K v
d

1t

)
ev[k]

+

(
−K v

p −
2K v

d

1t

)
ev[k − 1] +

K v
d

1t
ev[k − 2] (25)

where 1t is the sampling period, ep is the error in position,
ev is the error in velocity, uw is the quasi-velocity generated
by the outer control loop, K p

p and K p
d are the proportional

and derivative gains of the outer loop and K v
p , K

v
d and K v

i
are the proportional, derivative and integral gains of the inner
PID. The outer control loop utilizes a PD controller and
it takes as input the error ep calculated as the difference
between the desired AUV pose, xpref (t), and the estimated
AUV pose, ypn(t), expressed in the world coordinates. The
output of the outer PD controller, uw, is transformed into the
body frame, utilizing the rotation matrix RIB, and provides the
quasi-velocity reference to the inner control loop, such that
ub(t) = RIBu

w(t). The inner structure takes as input the error
ev(t), and gives as output the feedback control law u(t) used
to control the AUV.

Stability considerations: The convergence of the pro-
posed observer-feedback control formulation can be assured
by studying the error dynamics and using a Lyapunov
function argument from [32]. It is possible to locate the eigen-
values of Ae−KeiCe in the open left half plane, by modifying
the values of the matrix Kei . Thus, by properly selecting the
gains, the dynamics of the prediction errors (e1, . . . , en) are
globally exponentially stable to 0. This is done by using the
argument from the proof of [32, Theorem 4] to select n and
Kei such that the dynamics ẇ⋆[k] = Aew⋆[k] − KeiCew⋆[t −
τ
n ] with state variable w⋆, are globally exponentially stable
to 0 on all of Euclidean space. Note that the system in
Equation (24) has a smaller time delay affecting its dynamics,
specifically τ/n. Thus, for larger time delays τ , the number
of predictors n can be increased, stabilising the system. The
only restriction is that τ/n ∈ I. If the delay τ is known a priori
we could select n to ensure this is always true. Different
approaches can be taken to find the parameters in Kei . In this
sense, by locating the eigenvalues of Ae − KeiCe in the open
left half plane, it will be possible to stabilize the system.
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VI. RESULTS
In this section, we present the results obtained using our
proposed Koopman-based proportional integrator observer
control architecture, which we will refer to as KPIO.

A. EXPERIMENTAL SET-UP
To test the proposed system, we used a modified version
of the low-cost Bluerov2 Heavy vehicle that allows for
autonomous capabilities [52]. This vehicle has 4-degrees-of-
freedom (DOF), which allow for x-, y-, z-, and yaw- axis
control, and is capable of working at depths of up to 100 m.
Since the AUV is controllable in 4-DOF, the pose and veloc-
ity vectors are reduced to η(t) = [xl(t), yl(t), zl(t), ψa(t)]T

and ν(t) = [u(t), v(t), w(t), r(t)]T . The vehicle has been
modified by incorporating a Water Linked A50 Doppler
Velocity Log (DVL) to obtain reliable velocity measure-
ments. The proposed controller is implemented using a robot
operating system (or ROS) environment and operates at a
frequency of 25 Hz. Experimental data is obtained by deploy-
ing the vehicle in a water tank with length × width × depth
dimensions of 10 × 6 × 3 m. Position set-point commands
and trajectory following are used to evaluate the proposed
architecture.

B. SEMI-PARAMETRIC MODELLING EVALUATION
As a direct measurement of the position is unavailable,
we utilised the Koopman operator to model the velocity
of the AUV, and the pose is obtained by integrating the
velocity. Given that the only raw sensor data coming from
the vehicle is velocity, we avoided lifting the position com-
ponent of the state of the system (η), as this would entail
the Koopman operator to be used with data that already
has errors coming from another estimation approach, namely
by an extended Kalman filter. This resulted in consider-
ing the state ψ(x) defined as ψ(x) = [η, ψv(ν)]T =

[xl, yl, zl, ψa, u, v, w, r, ψv
5(ν), ψ

v
6(ν)]

T , where the
lifted state ψv(ν) = [u, v, w, r, ψv

5(ν), ψ
v
6(ν)]

T , with
ψv
5 and ψv

6 being randomly distributed Gaussian functions.
Therefore, the data pairs to train the Koopmanmodel have the
form αt = [ψv(ν(t)), u(t)], and β t = [ψv(ν(t + 1)), u(t)].
The pairs αt and β t were obtained by tele-operating the
underwater vehicle in random patterns at various veloci-
ties. To capture the coupled dynamics of the system, the
vehicle has been moved in multiple axes simultaneously.
We performed 20 different sets of data collection, each one
collecting 4400 data points, of which 3 sets were used for
validation. In total, a set of 88, 000 data points was obtained
at a frequency of 25 Hz, which is less than one hour of motion
data. The training was performed on an Intel i7 computer with
16GB of RAM. The same computer was utilised for testing
the proposed architecture on the AUV, using ROS.

We compared the obtained Koopman model against
a linear model obtained using classical modelling tech-
niques [53], [54]. Figure 2 shows the performance of the
developed Koopman model together with the true velocities

TABLE 1. RMSE error comparison for Koopman operator vs classical
modelling.

and the estimations obtained via the classical model. For
this test, the initial state of the Koopman model at time
t = 0s was set to ψv(ν(0)). We then performed a forward
estimation, utilising the true value of the control input and
updating the estimated velocities according to Equation (9).
We performed the estimation over a long prediction window,
starting at t = 0s and going to t = 100s. As can be
seen from Fig. 2a to Fig. 2d, the Koopman model is able to
estimate the current velocity of the system with low error.
The Koopman model maintains its accuracy even when the
prediction window is long. The Koopman model is able to
outperform the classical model in every degree of freedom
evaluated, a clear difference between the two being seen in
Fig. 2d where the classical dynamic modelling presents high
spikes and frequencies compared to the actual behaviour of
the vehicle.

To further analyse the performance of the Koopmanmodel,
we performed 20 tests of 200 seconds each, in which the
AUV was commanded to reach a certain position. Similarly
as before, the control inputs are fed to both models, and
the predicted velocities are recorded. The Root-Mean-Square
Error (RMSE) between the predictions and the measured
velocities for the 4-DOF is computed, and Table 1 sum-
marises the obtained metrics. It can be seen that the Koopman
model presents lower error in every DOF, outperforming the
classical model. It can be concluded that the Koopman model
performance is accurate, surpassing the performance of other
modelling techniques.

C. CONTROL BEHAVIOUR EVALUATION
This section presents the results obtained when using the
proposed KPIO methodology. For all experiments in this
section, the AUV has a delay in all control inputs equal
to τ = 2s. The parameters of the cascaded PID con-
trollers are K p

p = diag([0.37, 0.4, 0.15, 0.11]), K p
i =

diag([0, 0, 0, 0]) and K p
d = diag([0.1, 0.1, 0.1, 0.1]) for

the position controller, and K v
p = diag([9., 9., 7.2, 2.3]),

K v
i = diag([0.3, 0.5, 0.01, 0.001]) and K v

d = diag([0.01,
0.01, 0.01, 0.01]) for the velocity controller. Finally, Ke is
composed by matrices K and L (as presented in Section V),
with the non-zero elements of K being 8, and the L matrix a
diagonal matrix with elements 0.81.

Fig. 3 shows the errors when the desired reference set-point
position is xpref = [4.0 m, 0.0 m, 0.0 m, 0.0 rad]T . Fig. 3a,
shows the error for xl(t), yt (t) and zl(t), where it can be seen
how the controller is able to reach the desired position, with
a small overshoot in the x axis. Similarly, in Fig. 3b it can be
observed how initially there are some oscillation in the yaw
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FIGURE 2. The true value of the velocity ν(t) = [u(t), v (t), w(t), r (t)]T versus the Koopman estimation and the linear model obtained with
classical modelling techniques. a) Velocity in x axis u(t), b) Velocity in y axis v (t), c) Velocity in z axis w(t), and d) Rotational velocity around
z axis r (t).

FIGURE 3. Performance of the proposed Koopman Proportional Integral Observer (KPIO) based controller when trying to reach a desired
reference point of xp

ref = [4.0 m, 0.0 m, 0.0 m, 0.0 rad]T , under a delay of τ = 2s. a) Errors in linear positions; b) Errors in orientation.

that decrease in frequency as time passes. These are caused
by the highly coupled dynamics of the AUV. Nevertheless,

the controller is able to achieve and maintain the required
position for over 200s. The behaviour of the proposed
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FIGURE 4. Performance of the proposed KPIO based controller when trying to reach a desired reference point of xp
ref = [0.0 m, 0.0 m, 3.0 m,

0.0 rad]T , under a delay of τ = 2s: a) Errors in linear positions; b) Errors in orientation.

FIGURE 5. Performance of the proposed KPIO based controller when trying to reach a desired reference point of xp
ref = [4.0 m, 0.0 m, 1.0 m,

0.0 rad]T , under a delay of τ = 2s. a) Errors in linear positions b) Errors in orientation.

methodology is shown in Fig. 4 when a requested depth has to
be achieved and maintained. In this case, the requested posi-
tion is set to xpref = [0.0 m, 0.0 m, 3.0 m, 0.0 rad]T , which
means that the AUV has to submerge. The errors in the linear
positions are shown in Fig. 4a, where it can be observed that
there is no overshoot, however, some oscillations exist once
the position has been achieved. In Fig. 4b the yaw presents
small variations from the required reference position.

Fig. 5 shows the response of the AUV when different
reference goals are requested for several axes at the same
time. The vehicle is commanded to achieve the reference
defined as xpref = [4.0 m, 0.0 m, 1.0 m, 0.0 rad]T .
Fig. 5a shows the error in the linear position when achieving
the desired configuration, while Fig. 5b gives the error in
the orientation of the vehicle. The AUV is able to achieve the
desired reference position with minimal overshoot in under
50 seconds. Similarly, Fig. 6 presents the behaviour of the

AUV when a more complex request task is defined as: xpref =

[4.0 m, 2.5 m, −2.0 m, 0.0 rad]T . The errors in position,
Fig. 6a, show that the proposed controller is able to achieve
the required reference with minimal overshoot and steady-
state error. The error in Fig. 6b shows how the yaw ψa(t)
initially diverges and then later reaches the goal orientation.

To validate the qualitative results presented above, quanti-
tative analysis is performed in which a multitude of different
set points are requested. A total of 52 tests are performed
where the AUV is commanded to reach various reference
points for each axis, both in independent movements and
coupled movements (actuation happening at the same time
on multiple axes). Several metrics are calculated for each
test to quantitatively evaluate the proposed approach. The
metrics utilised are: 1) Normalised Root Mean Squared Error
(NRMSE), 2) Steady State Error (SSE), 3) Rise Time (RT) in
seconds, and 4) Overshoot (OT) in percentage. The average
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FIGURE 6. Performance of the proposed KPIO based controller when trying to reach a desired reference point of xp
ref = [4.0 m, 2.5 m, −2.0 m,

0.0 rad]T , under a delay of τ = 2s. a) Errors in linear positions b) Errors in orientation.

FIGURE 7. Performance of the proposed KPIO based controller when
trying to follow a square pattern, under a delay of τ = 2s.

NRMSE is 0.1856 and the average SSE is 0.0252, showing
that the proposed strategy is highly accurate and capable
of allowing the AUV to perform station-keeping tasks with
high accuracy. The average rising time is RT 13.01 seconds,
showcasing that the controller is appropriate for underwater
vehicles, which are designed by nature to be slow sys-
tems [24]. Finally, the averageOT of 9.87% represents a small
deviation from the steady state values and these are mostly
caused by an underestimation of the real state of the system
in the observer formulation.

The proposed KPIO control system is appropriate not only
for set-point control but also for trajectory tracking. The
results presented in Fig. 7 and Fig. 8 show how the AUV
starts in the surface and is requested to follow a predefined
trajectory. Fig. 7 shows a square trajectory that the AUV has
to follow, ensuring that certain check points are reached (rep-
resented by the orange markers). The vehicle, initially has to
submerge and reach the operating depth of 2 meters, and after
it has to continue to navigate and maintain this depth to reach
the checking points. Fig. 8 shows a test where the robot has
to follow a lawnmower pattern close to the water’s surface.

FIGURE 8. Performance of the proposed KPIO based controller when
following a lawnmower pattern, under a delay of τ = 2s.

In both cases, it can be seen that the vehicle successfully
reaches the check points, maintaining its operating depth, but
due to a slight overshoot in the yaw axis, there are small
deviations from achieving a fully straight line.

D. COMPARISON
In this section, we provide a comparison of the proposed
KPIO based controller versus the feedback PID without the
observer, and a sequential Koopman Proportional Observer
(or KPO) controller. The KPO controller utilizes the Koop-
man model in the sequential prediction, but does not incor-
porate the integral term in Equation (12) [47].
Fig. 9a shows the error in the linear position, when the

desired reference configuration is xpref = [1.0 m, 0.0 m,
0.0 m, 0.0 rad]T , while Fig. 9b presents the error in the
angular position for the PID controller without the observer.
It can be clearly seen how the system rapidly becomes
unstable, which forced us to abort the test. In Fig. 10
the behaviour of the robot when a KPO controller is pre-
sented. The performance of the system is shown when
the same requested configuration is used, that is xpref =
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FIGURE 9. Performance of the PID controller when trying to reach a desired reference point of xp
ref = [1.0 m, 0.0 m, 0.0 m, 0.0 rad]T , under a

delay of τ = 2s. a) Errors in linear positions b) Errors in orientation.

FIGURE 10. Performance of the Koopman Proportional Observer (KPO) controller when trying to reach a desired reference point of
xp

ref = [1.0 m, 0.0 m, 0.0 m, 0.0 rad]T , under a delay of τ = 2s. a) Errors in linear positions b) Errors in orientation.

[1.0 m, 0.0 m, 0.0 m, 0.0 m]T . Fig. 10a shows the error
in the linear positions, while Fig. 10b shows the error in the
angular positions. It can be seen that, while the controller
drives the AUV towards the requested position, it is unable
to maintain the position. High steady-state errors are present
with oscillations. Fig. 11 shows the performance when utilis-
ing the novel proposed KPIO controller. It can be seen that the
controller is able to reach the desired position, with low errors
as observed in Fig. 11a and Fig. 11b. Additionally, while rise
time values are similar for both KPIO and KPO, the proposed
KPIO controller is able to reach the desired position faster and
to maintain it.

Table 2 presents the quantitative evaluation of the above
mentioned control algorithms for 4 tests. These tests require
the vehicle to move to various reference goals, actuating
both the linear and angular DOFs of the vehicle. Similarly
as before, a delay of 2 seconds is used. In the table, a dash
‘‘−’’ indicates that the task was not successfully solved by

the corresponding algorithm. The proposed KPIO controller
outperforms the other methods, being able to successfully
achieve the required tasks, while at the same time having
smaller errors and oscillations compared to the KPO. Partic-
ularly, our method provides a 40% improvement in NRMSE
performance, when compared with the KPO for the success-
ful cases. The PID is unable to complete most of the tasks,
except Task 2. In this task, the reference was set to xpref =

[0.0 m, 0.0 m, 2.0 m, 0.0 m]T and due to the decoupled
dynamics of the z axis, it represents a simpler problem that the
PID is able to solve, although with high values of overshoot
and rise time.

E. DISCUSSION
The nonlinear dynamics of the AUV in combination with the
delayed inputs result in a system that is difficult to control.
Nevertheless, the proposed KPIO approach was able to obtain
successful results. One of the main advantages of the pro-
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FIGURE 11. Performance of the proposed KPIO controller when trying to reach a desired reference point of
xp

ref = [1.0 m, 0.0 m, 0.0 m, 0.0 m]T , under a delay of τ = 2s. a) Errors in linear positions b) Errors in orientation.

TABLE 2. Performance comparison of the proposed algorithm for
different tasks.

posed methodology relies on the data-driven characteristics
of the control system. The Koopman operator provides a
simple and fast methodology for obtaining a linear model
of the AUV, offering excellent performance while at the
same time maintaining a low computational cost, crucial in
low-cost autonomous vehicles. Furthermore, this data-driven
approach results in a semi-parametric description of the sys-
tem that combines an equation-based representation with a
data-driven parameter estimation. However, while our Koop-
man model provides good performance, the method is not
limited to the use of a Koopman based model. In fact, the
predictor-based control architecture can use any linear model
of the vehicle. This is an advantage, especially in systems in
which accurate linear models can be computed with meth-
ods such as Newton-Euler or Euler-Lagrange. The proposed
observer provides a simple implementation in matrix form,
which allows for fast computation of the future state. Further-
more, the sequential characteristic of the observer makes the
effect of the delay on each subsystem smaller, by subdividing
for the number of predictors, relaxing the selection of the
gains and allowing it to work with longer delays.

One of the main concerns when working with model-based
methods is obtaining a model that is able to accurately rep-
resent the behaviour of the vehicle. Initial experiments done
with a linearised model of the AUV obtained with traditional
modelling techniques [54] showed significant differences
between the actual behaviour of the AUV and the predictions
obtained with the model, which hindered the performance
of the observer. While the model obtained by means of the
Koopman operator improved the performance, there are still
some challenges, particularly with regard to angular velocity,
that require further investigation. Affordable sensors, like
those on board the low-cost underwater vehicle used for our
trials [52], might not be sufficient for providing an accurate
model representation, and therefore higher quality Inertial
Measurement Units (or IMUs) may be required [55], [56].
Another characteristic of the proposed approach is that the
obtained model is pre-trained and then fixed during execu-
tion, meaning that any subsequent data obtained is not utilised
to improve the model. A real-time adaptation mechanism
could be considered, in which real-time data is utilised to
improve the model. Future improvements of the Koopman
modelling technique could be considered to include an addi-
tional term that accounts for disturbances in the system,
leading to a simplified observer representation. Additionally,
while the controller is able to stabilise the system, further
work is needed to investigate this in detail, particularly for
cases in which hard position constraints are required. Future
work can also investigate how other types of controllers,
such as fixed-time controllers [28], can be integrated with the
Koopman-based sequential predictors.

VII. CONCLUSION
In this article, we introduced a novel control architecture
for AUVs working under communication delays. We based
the proposed approach on the predictor based theory, which
is expanded here to incorporate highly nonlinear complex
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systems, such as marine vehicles. The observer predictor
formulation was leveraged to obtain a feedback control law
that is able to compensate for uncertainties in the state caused
by delays in the communication channels of the robot. Fur-
thermore, a data-driven model was incorporated, based on
Koopman operator theory, that can replace classical dynamic
models, while at the same time providing a semi-parametric
approximation that can be readily incorporated into linear
control formulations.

A real-time evaluation of our proposed control strategy
was performed on a low-cost underwater vehicle under the
influence of time delays. The obtained results show that
our control formulation is able to successfully reach stable
behaviour, even in the presence of long delays. A comparative
analysis with a simple PID approach shows that under such
uncertainty, the PID is unable to reach the desired reference.

In future work, the present formulation will be applied to
higher degree-of-freedom platforms such as an underwater
vehicle manipulator system (or UVMS). Furthermore, the
Koopman operator will be used to accurately incorporate
disturbances in the system.
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